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Introducing this in (A5) and using (A1), we have 

a r = { ( N - Z ) b  2} ( N - l )  bm-2br+v~ . (A6) 

Equation (A6) is used to obtain a numerical solution. 
If we set first all Vr to zero, approximate values a'r -> ar 
are calculated. These serve to obtain approximate 
values v'r which are introduced in (A6) to obtain 
improved estimates of a ,  If (~m b, , -2br)/b~>O.Ol,  
about five iterations are sufficient to reach conver- 
gence at the 0.1% level, i.e. [(a'~- a~)/a'~] < 0-001 and 
[ b,, (calc.) - bin]~ bm < 0.001. 

An explicit solution is easily calculated for the 
special case where all bm except one are equal: 

bl, b2 = b3 = . . . =  bN : 

a 2 ---- { ( N -  2) bE}/{( N -  1)2b2 - ( S - 1)bl} 
a 2 = a 2 = . . . = a 2  (37)  

= { ( N -  1 ) b 2 - b , } / { ( N -  1 ) ( N- 2 ) } .  
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Abstract 

The ambiguities in merohedral crystal classes are 
discussed from the group-theoretical point of view. 
A classification of merohedral point groups and the 
extension of these terms to space groups and crystal 
structures is proposed. Similarities and differences 
for special types of merohedries are discussed. 

I. Introduction 

Recently Jones (1986) discussed ambiguities and their 
resolution in non-centrosymmetric crystal classes. He 
subdivides the non-centrosymmetric point groups 
into chiral, polar and roto-inversional subclasses, the 
last one containing only non-centrosymmetric point 
groups with roto-inversions 4 and 6. The ambiguities 
are resolved for the chiral subclass by determination 
of the absolute configurations, for the polar subclass 

by fixing the polar direction, and for the roto-inver- 
sional subclass by the assignment of absolute axes. 

The usual classification of crystallographic point 
groups was introduced by Schoenflies (1891) mainly 
on the basis of subgroup relations; the nomenclature 
was derived from morphology. The main classes are 
the lattice point groups, which are called holohedries; 
point groups which are within a crystal family of 
subgroups of a holohedry are called merohedries (cf 
also International Tables for Crystallography, 1987). 
The index of the subgroup is indicated in the name: 
hemihedry, tetartohedry, ogdohedry for indices 2, 4, 8 
respectively. A more subtle distinction subdivides into 
'paramorphic, enantiomorphic, hemimorphic'  types 
of merohedries. These expressions, however, are used 
with different meanings by different authors (e.g. 
Schoenflies, 1891; Niggli, 1919; Burckhardt, 1966; 
Kleber, 1985). Nevertheless, there was a general 
consensus that these distinctions derived from 
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Table 1. Crystallographic point groups and their classification with respect to merohedral subgroup relations 

Family 

H o l o h e d r y  

Merohed r i e s  

2 

p a r a m o r p h i c  4 

2 
e n a n t i o m o r p h i c  4 

8 

2 
h e m i m o r p h i c  4 

2 
ro to - inve r s iona l  

4 

I n d e x  C u b i c  H e x a g o n a l  T e t r a g o n a l  O r t h o r h o m b i c  M o n o c l i n i c  T r i c l i n i c  

6 4 2 
1 m 3 m  -- m m  3 m  -- m m  m m m  -- i 

m m m 

6 4 

m m 
_ 

- -  3 . . . . .  

432 622 32 422 222 2 1 
23 6, 321 (312) 3 4 - -  - -  - -  
- -  3 . . . . .  

- -  6 m m  3 m  4 m m  m m 2  m - -  

- -  3 m l  (31m)  . . . .  

43m 6 m 2  (62m)  - -  42m (4rn2) - -  - -  - -  

morphology are also of importance for the physical 
properties of crystals (Voigt, 1966). 

It is the intention of this paper to correlate these 
terms with properties of the subgroups for the resolu- 
tion of the ambiguities from a more general point of 
view. This procedure might include a further applica- 
tion to space groups and crystal structures. 

2. Proposal 

A point group is called polar if the 'centre of gravity' 
of the symmetrically equivalent positions does not 
coincide with the origin: 

( l / N )  ~ R , X # O ,  X =  , 
i = 1  

i.e. the sum of all 3 x 3 matrices R~ representing the 
operations does not add up to the zero matrix. For a 
unique determination of the different types of 
merohedries the following definitions are introduced. 
(i) A merohedral subgroup is called 'paramorphic' if 
it is centrosymmetric (non-holohedral Laue classes). 
(ii) A merohedral subgroup is called 'enantiomorphic' 
if it contains only rotations [all det(R~) = +1]. (iii) A 
merohedral subgroup is called 'hemimorphic' if it is 
polar and if it contains mirror operations. (iv) A 
merohedral subgroup is called 'roto-inversional' if it 
is non-centrosymmetric and if it contains roto-inver- 
sions 4 or 6; it is non-polar. The consequences of 
these definitions for the classification of point groups 
are given in Table 1. 

Roto-inversional subgroups do not allow polar 
properties such as pyro- or ferroelectricity; they are 
compatible, however, with piezoelectricity. Hemi- 
morphic subgroups allow polar properties but never 
chirality. 

Enantiomorphic merohedries are specific for chi- 
rality; paramorphic merohedries are not compatible 
with polar, piezoelectric or chiral properties. 

3. Discussion 

The ambiguities due to a merohedral subgroup are 
related to a group-theoretical background; they corre- 
spond to the number of cosets that are generated by 
the decomposition of the holohedry with respect to 
the merohedral subgroup. A geometrical object with 
the symmetry of the subgroup is mapped by the 
operations of a coset to another geometrical object. 
Each operation of the coset produces the same image. 
All images are equivalent with respect to the 
holohedry but non-equivalent and thus ambiguous 
with respect to the subgroup. This means the number 
of cosets equals the number of different sites of the 
object with respect to the symmetry of the subgroup, 
i.e. the number of ambiguities. Resolving an 
ambiguity is equivalent to selecting a specific image 
of the geometric object. From this point of view all 
merohedries behave in a similar way. 

The non-centrosymmetric merohedries allow the 
construction of special cosets in a unique way by 
multiplication of all elements of the subgroup with 
the centre of inversion 1; thus an enantiomorphic or 
hemimorphic or roto-inversional coset can be as- 
signed. In the case of a paramorphic merohedry, 
instead of the centre of inversion another element has 
to be chosen. It is convenient to employ an element 
from that Blickrichtung that is not used in the merohe- 
dric group; this is either a rotation 2 or a mirror m. 

The complete symmetry included in the use of a 
crystallographic coordinate system is described by 
the full lattice symmetry, i.e. the holohedry. The addi- 
tional convention only to use right-handed coordinate 
systems lowers its symmetry to the enantiomorphic 
hemihedry. As a consequence enantiomorphic images 
can be distinguished by the determination of chiral 
properties because mappings Ri with d e t ( R i ) = - I  
must not be applied to the coordinate axes. In contrast 
to this the hemimorphic, paramorphic and roto-inver- 
sional cosets contain mappings with det(Ri) = + 1 and 
d e t ( R i ) = - I  simultaneously. The selection of an 
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image may be regarded as the selection of a right- 
handed coordinate system compatible with a rotation. 

These group-theoretical considerations justify the 
results of Jones (1986). 

4. Practical procedure 

In fact the ambiguities are handled by measuring a 
suitable physical property that specifies the allowed 
object as far as possible. As crystal structures are 
usually determined by diffraction experiments it is 
convenient to use properties derivable from X-ray 
diffraction data. 

In the case of paramorphic merohedries the struc- 
ture-factor moduli can be used for fixing the 
ambiguity of the description. The operation Ri (rota- 
tion 2 or mirror m) that is used for the construction 
of the characteristic coset correlates pairs of structure 
factors. The ratio q of their moduli changes to 1/q 
with the transformation to the other image. 

In the case of non-centrosymmetric structures 
properties must be regarded that are sensitive to struc- 
ture-factor phases. This can be done by comparing 
the moduli of Friedel pairs affected by anomalous 
dispersion or by measuring suitable triplet phases. 
For enantiomorphic merohedries this means the 
determination of the absolute configuration (for 
chiral species) or conformation (for achiral species). 
For hemimorphic and roto-inversional merohedries 
this means fixing the ambiguity in the description: 
The operation 1 correlates the sign of suitable triplet 
phases or the moduli of suitable Friedel pairs of 
structure factors; their values change with the trans- 
formation to the other image. 

As a consequence of these considerations two types 
of absolute structures can be distinguished. An 
absolute structure can be determined by experiment 
in the case of enantiomorphic merohedries because 
left-handed coordinate systems are excluded. In the 
case of non-enantiomorphic merohedries an absolute 
structure is uniquely determined by the selection of 
one description among different equivalent 
possibilities. The difference in the two cases corre- 
sponds to the special role of chiral properties. 

The transfer of these terms to space groups and 
crystal structures is proposed, because these consider- 
ations do not only affect problems of crystal structure 
determination but also problems in structure descrip- 
tion and standardization. The extension on 
klassengleiche subgroup relations will, however, need 
further discussions. 

The authors thank Mr E. Weckert for helpful 
discussions. 
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Abstract 

The section method is applied to derive the Penrose 
pattern and related patterns with a ten- or fivefold 
axis. These are derived from a four-dimensional 
decagonal crystal or from a five-dimensional icosahe- 
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dral crystal as a two-dimensional section. The two 
descriptions correspond to the three- and four- 
dimensional ones in the usual superstructure and the 
Penrose pattern can be regarded as the superstructure 
in the four-dimensional space. The diffraction 
intensities and symmetries of these patterns are dis- 
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